

WASTE MANAGEMENT

92-460 Farrington Hwy. Kapolei, Hl 96707 (808) 668-2985 (808) 668-1366 Fax

February 28, 2011

Mr. Steven Chang, P.E.

Solid and Hazardous Waste Branch

State of Hawaii Department of Health

919 Ala Moana Blvd, Room

Honolulu, HI 96814

Mr. Stuart Yamada, P.E., Chief

Environmental Management Division

State of Hawaii Department of Health

919 Ala Moana Blvd, Room 300

Honolulu, HI 96814

Re: Request to Discharge Stormwater

Waimanalo Gulch Sanitary Landfill

Solid Waste Management Permit No. LF-0182-09

Dear Mr. Chang and Mr. Yamada:

As you are aware, Waste Management of Hawaii, Inc. (WMH) has been pumping the water contained in the sedimentation pond for approximately one month and discharging to the wastewater treatment plant. At the request of the Department of Health (DOH), WMH initiated this practice following severe storms that passed through the islands in January 2011. The DOH was apparently concerned about the possibility for discharging potentially contaminated storm water from the site.

On February 2, 2011 Waste Management collected a sample to characterize the remaining water stored in the sedimentation basin. These results are attached and indicate that the water is similar in characteristics to storm water and not impacted by landfill operations, including leachate. The results are below the screening criteria indentified in the Sites Storm Water Permit and the USEPA benchmark levels for storm water.

Based on these results and our knowledge of the sedimentation basin, WM is requesting DOH's concurrence that the storm water retained in the sedimentation basin may be discharged through WGSL's authorized discharge point. Further as part of WM's efforts to restore the sedimentation basin to pre-storm conditions, WM plans to resume discharging, pursuant to its permits and plans, stormwater generated from future storm events. This will enable WM to more quickly restore the sedimentation pond and meet the terms of the Administrative Order of Consent (AOC) entered into with the USEPA on January 13, 2011. While WMH is not aware of any legal requirement that prohibits the site from discharging stormwater from the sedimentation

basin, WMH nonetheless would like to know whether DOH objects to its plan to discharge stormwater from the sedimentation basin or is aware of any legal prohibition against it.

The sediment pond is divided into two areas by a separation berm that cuts the pond approximately in half. The upper half of the pond was nearly empty of water but full of sediment and the lower half of the pond still had a limited amount of water remaining, until recent storms on February 22nd and February 23rd, which added approximately 3 feet of water into the pond. The workplan that WGSL submitted requires that the pond sediment be removed to pre-storm elevations and that the underdrains in the lower half be inspected and filter media replaced. As part of this effort, WM began removing sediment from the pond. If rainfall continues to affect the site, it is likely that the sediment pond will overtop and discharge water, despite our efforts to restore the basin.

Since the stormwater contained in this pond has been tested and is similar to water normally discharged from the facility, WM would appreciate your earliest concurrence of our proposed plan to resume discharging stormwater, as directed by the landfill permit. Please contact me at 668-2985 if you have any questions.

Best regards.

Joseph R. Whelan

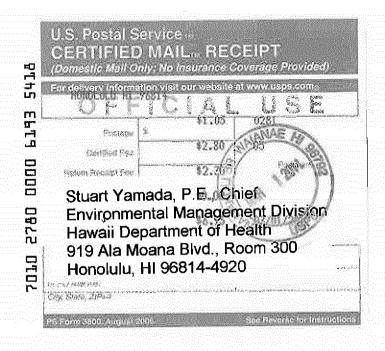
General Manager/Vice President Waste Management of Hawaii

CC: Lene Ichinotsubo, Hawaii Department of Health

Rick Von Pein, Waste Management

File

Waimanalo Gulch Sanitary Landfill Sediment Pond Water Sample


Collected on 2/2/2011

Laboratory Final Data Summary Table

Method	Analyte	Unit	Screening Criteria a	Benchmark Level b	SED POND
1664A	HEM (Oil and Grease)	mg/L	15	15	2 J
40CFR136A 625	Alpha-Terpineol	mg/L	0.016	NA NA	< 0.01
	Benzoic acid	mg/L	0.071	NA NA	< 0.05
	p-Cresol	mg/L	0.014	NA	< 0.01
	Pentchlorophenol	mg/L	0.02	NA NA	< 0.021 *
	Phenol	mg/L	0.015	1	< 0.01
EPA 200.7 Rev 4.4	Arsenic	mg/L	0.36	0.16854	0.0057 J
	Cadmium	mg/L	0.003	0.0159	< 0.005
	Calcium	mg/L	NA NA	NA	48
	Iron	mg/L	1	1	4.6
	Lead	mg/L	0.029	0.0816	< 0.009
	Magnesium	mg/L	NA	0.0636	25
	Potassium	mg/L·	NA	NA NA	5.8
	Selenium	mg/L	0.02	0.2385	< 0.015
	Silver	mg/L	0.001	0.0318	< 0.00093 *
	Sodium	mg/L	NA NA	NA	110
	Zinc	mg/L	0.022	0.117	0.019 J
EPA 245.1	Mercury	mg/L	0.0024	0.0024	0.000055 J
EPA 7196	Hexavalent Chromium	μg/L	16	NA	< 10
EPA 365.1	Phosphorus, Total	mg/L	NA NA	2	0.21
MCAWW 350.1	Ammonia	mg/L	4.9	19	0.3 B
MCAWW 353.2	Nitrate-Nitrite as Nitrogen	mg/L	NA NA	0.68	0.072 J
PA Total Nitrogen	Nitrogen, Total	mg/L	NA NA	NA NA	1.9
PA 405.1	BOD (5-Day)	mg/L	NA NA	30	4.18
MCAWW 410.4	Chemical Oxygen Demand	mg/L	NA NA	120	36
M 2540D	Total Suspended Solids	mg/L	100	100	26
MCAWW 300.0A	Bromide	mg/L	NA .	NA NA	0.85
	Chloride	mg/L	NA NA	860	120
	Sulfate	mg/L	NA NA	NA NA	110
SM 2320B	Bicarbonate Alkalinity	mg/L	NA.	NA NA	170
	Carbonate Alkalinity	mg/L	NA NA	NA.	4.7 J
	Total Alkalinity	mg/l.	NA NA	NA NA	170
Bac-T	Total Coliform	MPN/100 mL	NA NA	NA NA	170
	E. coli	MPN/100 mL	NA	NA	< 2.0
ield Method	рН	SU	5.5-8.0	6.0-9.0	7.22

Note:

à	screening criteria are based on the requirements in the Waimanalo Gulch Storm Water Discharge Permit
b	benchmark levels are developed by EPA for storm water discharge
Bold	exceed screening criteria
<	not detected above the reporting limits
*	not detected above the method detection limits
μg/L	micrograms per liter
mg/L	milligrams per liter
В	compound was found in the method blank (0.0241 J mg/L for Ammonia)
BOD	blochemical oxygen demand
HEM	n-hexane extractable material
MPN	most probable number
NA	no limitation at this time
J	estimated result is less than the reporting limit but greater than or equal to the method detection limit
SU	standard unit

